Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Control Release ; 369: 325-334, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38565395

ABSTRACT

Challenges for glioma treatment with nanomedicines include physio-anatomical barriers (the blood-brain barrier and blood-brain tumor barrier), low drug loading capacity, and limited circulation time. Here, a red blood cell membrane-coated docetaxel drug nanocrystal (pV-RBCm-NC(DTX)), modified with pHA-VAP (pV) for all-stage targeting of glioma, was designed. The NC(DTX) core exhibited a high drug loading capacity but low in vivo stability, and the RBCm coating significantly enhanced the stability and prolonged in vivo circulation. Moreover, the Y-shaped targeting ligand pV was modified by a mild avidin-biotin interaction, which endowed RBCm-NC(DTX) with superior barrier-crossing ability and therapeutic efficacy. The integration of nanocrystal technology, cell membrane coating, and the avidin-biotin insertion method into this active targeting biomimetic formulation represents a promising drug delivery strategy for glioma.

2.
J Control Release ; 369: 722-733, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38583575

ABSTRACT

The existence of the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) greatly limits the application of chemotherapy in glioma. To address this challenge, an optimal drug delivery system must efficiently cross the BBB/BBTB and specifically deliver therapeutic drugs into glioma cells while minimizing systemic toxicity. Here we demonstrated that glucose-regulated protein 78 (GRP78) and dopamine receptor D2 were highly expressed in patient-derived glioma tissues, and dopamine receptors were highly expressed on the BBB. Subsequently, we synthesized a novel "Y"-shaped peptide and compared the effects of different linkers on the receptor affinity and targeting ability of the peptide. A peptide-drug conjugate (pHA-AOHX-VAP-doxorubicin conjugate, pHA-AOHX-VAP-DOX) with a better affinity for glioma cells and higher solubility was derived for glioma treatment. pHA-AOHX-VAP-DOX could cross both BBB and BBTB via dopamine receptor and GRP78 receptor, and finally target glioma cells, significantly prolonging the survival time of nude mice bearing intracranial glioma. Furthermore, pHA-AOHX-VAP-DOX significantly reduced the toxicity of DOX and increased the maximum tolerated dose (MTD). Collectively, this work paves a new avenue for overcoming multiple barriers and effectively delivering chemotherapeutic agents to glioma cells while providing key evidence to identify potential receptors for glioma-targeted drug delivery.

3.
Adv Healthc Mater ; 13(6): e2303261, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37961920

ABSTRACT

Infectious disease pandemics, including the coronavirus disease 2019 pandemic, have heightened the demand for vaccines. Although parenteral vaccines induce robust systemic immunity, their effectiveness in respiratory mucosae is limited. Considering the crucial role of nasal-associated lymphoid tissue (NALT) in mucosal immune responses, in this study, the intranasal complex composed of G5-BGG and antigen-expressing plasmid DNA (pSP), named G5-BGG/pSP complex, is developed to activate NALT and to promote both systemic and mucosal immune defense. G5-BGG/pSP could traverse mucosal barriers and deliver DNA to the target cells because of its superior nasal retention and permeability characteristics. The intranasal G5-BGG/pSP complex elicits robust antigen-specific immune responses, such as the notable production of IgG antibody against several virus variants. More importantly, it induces elevated levels of antigen-specific IgA antibody and a significant expansion of the lung-resident T lymphocyte population. Notably, the intranasal G5-BGG/pSP complex results in antigen expression and maturation of dendritic cells in nasal mucosae. These findings exhibit the potential of G5-BGG, a novel cationic material, as an effective gene carrier for intranasal vaccines to obtain robust systemic and mucosal immunity.


Subject(s)
COVID-19 , Vaccines , Humans , Immunity, Mucosal , SARS-CoV-2 , COVID-19/prevention & control , DNA , Dendritic Cells
4.
Nat Nanotechnol ; 18(9): 1085-1093, 2023 09.
Article in English | MEDLINE | ID: mdl-37142709

ABSTRACT

High rates of ligament damage require replacements; however, current synthetic materials have issues with bone integration leading to implant failure. Here we introduce an artificial ligament that has the required mechanical properties and can integrate with the host bone and restore movement in animals. The ligament is assembled from aligned carbon nanotubes formed into hierarchical helical fibres bearing nanometre and micrometre channels. Osseointegration of the artificial ligament is observed in an anterior cruciate ligament replacement model where clinical polymer controls showed bone resorption. A higher pull-out force is found after a 13-week implantation in rabbit and ovine models, and animals can run and jump normally. The long-term safety of the artificial ligament is demonstrated, and the pathways involved in integration are studied.


Subject(s)
Anterior Cruciate Ligament , Nanotubes, Carbon , Sheep , Animals , Rabbits , Anterior Cruciate Ligament/surgery , Carbon Fiber , Prostheses and Implants
5.
Acta Pharm Sin B ; 13(1): 359-371, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36815053

ABSTRACT

Brain metastasis is a common and serious complication of breast cancer, which is commonly associated with poor survival and prognosis. In particular, the treatment of brain metastasis from triple-negative breast cancer (BM-TNBC) has to face the distinct therapeutic challenges from tumor heterogeneity, circulating tumor cells (CTCs), blood-brain barrier (BBB) and blood-tumor barrier (BTB), which is in unmet clinical needs. Herein, combining with the advantages of synthetic and natural targeting moieties, we develop a "Y-shaped" peptide pVAP-decorated platelet-hybrid liposome drug delivery system to address the all-stage targeted drug delivery for the whole progression of BM-TNBC. Inherited from the activated platelet, the hybrid liposomes still retain the native affinity toward CTCs. Further, the peptide-mediated targeting to breast cancer cells and transport across BBB/BTB are demonstrated in vitro and in vivo. The resultant delivery platform significantly improves the drug accumulation both in orthotopic breast tumors and brain metastatic lesions, and eventually exhibits an outperformance in the inhibition of BM-TNBC compared with the free drug. Overall, this work provides a promising prospect for the comprehensive treatment of BM-TNBC, which could be generalized to other cell types or used in imaging platforms in the future.

6.
J Control Release ; 354: 538-553, 2023 02.
Article in English | MEDLINE | ID: mdl-36641120

ABSTRACT

Evidence is mounting that there is a significant gap between the antitumor efficacy of nanodrugs in preclinical mouse tumor models and in clinical human tumors, and that differences in tumor models are likely to be responsible for this gap. Herein, we investigated the enhanced permeability and retention (EPR) effect in mouse lung cancer models with different tumor growth rates, volumes and locations, and analyzed the nanodrug tumor targeting behaviors limited by tumor vascular pathophysiological characteristics in various tumor models. The results showed that the fast-growing tumors were characterized by lower vascular tight junctions, leading to higher vascular paracellular transport activity and nanodrug tumor accumulation. The paracellular transport activity increased with the growth of tumor, but the vascular density and transcellular transport activity decreased, and as a result, the average tumor accumulation of passive targeting nanodrugs decreased. Orthotopic tumors were rich in blood vessels, but had low vascular transcellular and paracellular transport activities, making it difficult for nanodrug accumulation in orthotopic tumors via passive targeting strategies. The antitumor efficacy of passive targeting nanodrugs in various lung cancer-bearing mice validated the aforementioned nanodrug accumulation behavior, and nanodrugs based on the angiogenesis-tumor sequential targeting strategy achieved obviously improved efficacy in orthotopic lung cancer-bearing mice. These results suggest that the EPR effect varies in different tumor models and should not be used as a universal targeting strategy for antitumor nanodrugs. Besides, attention should be paid to the animal tumor models in the evaluation of nanodrugs so as to avoid exaggerating the antitumor efficacy.


Subject(s)
Lung Neoplasms , Nanoparticles , Humans , Mice , Animals , Nanoparticles/therapeutic use
7.
Acta Pharm Sin B ; 12(4): 2000-2013, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35847517

ABSTRACT

Thrombolytic agents have thus far yielded limited therapeutic benefits in the treatment of thrombotic disease due to their short half-life, low targeting ability, and association with serious adverse reactions, such as bleeding complications. Inspired by the natural roles of platelets during thrombus formation, we fabricated a platelet-based delivery system (NO@uPA/PLTs) comprising urokinase (uPA) and arginine (Arg) for targeted thrombolysis and inhibition of re-embolism. The anchoring of uPA to the platelet surface by lipid insertion increased the thrombotic targeting and in vivo circulation duration of uPA without disturbing platelet functions. Nitric oxide (NO) generated by the loaded Arg inhibited platelet aggregation and activation at the damaged blood vessel, thereby inhibiting re-embolism. NO@uPA/PLTs effectively accumulated at the thrombi in pulmonary embolism and carotid artery thrombosis model mice and exerted superior thrombolytic efficacy. In addition, the platelet delivery system showed excellent thrombus recurrence prevention ability in a mouse model of secondary carotid artery injury. The coagulation indicators in vivo showed that the platelet-based uPA and NO co-delivery system possessed a low hemorrhagic risk, providing a promising tool for rapid thrombolysis and efficient inhibition of posttreatment re-embolism.

8.
J Control Release ; 346: 32-42, 2022 06.
Article in English | MEDLINE | ID: mdl-35378211

ABSTRACT

Chemotherapy is still the mainstay treatment for metastatic triple-negative breast cancers (TNBC) currently in clinical practice. The unmet needs of chemotherapy for metastatic TNBC are mainly from the insufficient drug delivery and unavailable targeting strategy that thwart the whole progression of metastatic TNBC. The in vivo ligands-mediated active targeting efficiency is usually affected by protein corona. While, the protein corona-bridged natural targeting, in turn, provides a new way for specific drug delivery. Herein, we develop a novel metastatic progression-oriented in vivo self-assembled Cabazitaxel nanocrystals (CNC) delivery system (PC/CNC) through the CNC automatically absorbing functional plasma proteins (transferrin, apolipoprotein A-IV and apolipoprotein E) in vivo, aiming to achieve the simultaneously targeted delivery to primary tumors, circulating tumor cells and metastatic lesions. With the unique advantages of superhigh drug-loading and protein corona empowered active targeting properties to tumor cells, HUVECs, active-platelets and blood-brain barrier/blood-tumor barrier, the PC/CNC exhibits a significantly improved therapeutic effect in metastatic TNBC therapy compared with free drug and CNC-loaded liposomes.


Subject(s)
Nanoparticles , Protein Corona , Triple Negative Breast Neoplasms , Cell Line, Tumor , Humans , Liposomes , Nanoparticles/chemistry , Triple Negative Breast Neoplasms/pathology
9.
Pharmaceutics ; 14(4)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35456631

ABSTRACT

Drug nanocrystals, which are comprised of active pharmaceutical ingredients and only a small amount of essential stabilizers, have the ability to improve the solubility, dissolution and bioavailability of poorly water-soluble drugs; in turn, drug nanocrystal technology can be utilized to develop novel formulations of chemotherapeutic drugs. Compared with passive targeting strategy, active tumor-targeted drug delivery, typically enabled by specific targeting ligands or molecules modified onto the surface of nanomedicines, circumvents the weak and heterogeneous enhanced permeability and retention (EPR) effect in human tumors and overcomes the disadvantages of nonspecific drug distribution, high administration dosage and undesired side effects, thereby contributing to improving the efficacy and safety of conventional nanomedicines for chemotherapy. Continuous efforts have been made in the development of active tumor-targeted drug nanocrystals delivery systems in recent years, most of which are encouraging and also enlightening for further investigation and clinical translation.

10.
J Control Release ; 345: 685-695, 2022 05.
Article in English | MEDLINE | ID: mdl-35346767

ABSTRACT

Glioblastoma (GBM) is the most aggressive brain tumor with poor prognosis and frequent recurrence. The blood-brain barrier (BBB), blood-brain tumor barrier (BBTB) hinder the entry of therapeutics into the glioma region. Vasculogenic mimicry (VM) formed by invasive glioma cells is also related to recurrence of GBM. VAP is a D-peptide ligand of GRP78 protein overexpressed on BBTB, VM, and glioma cells but not on normal tissues. Besides, p-hydroxybenzoic acid (pHA) can effectively traverse the BBB. Herein we developed an all-stage glioma-targeted cabazitaxel (CBZ) nanocrystal loaded liposome modified with a "Y" shaped targeting ligand composed of pHA and VAP (pV-Lip/cNC). The pure drug nanocrystal core provided high drug loading, while lipid membrane promoted the stability and circulation time. pV-Lip/cNC exhibited excellent glioma homing, barriers crossing, and tumor spheroid penetrating capability in vitro. Treatment of pV-Lip/cNC displayed enhanced CBZ accumulation in glioma and anti-glioma effect with a median survival time (53 days) significantly longer than that of cNC loaded liposomes modified with either single ligand (42 days for VAP and 45 days for pHA) in the murine orthotopic GBM model. These results indicated pV-Lip/cNC could traverse the BBB and BBTB, destruct VM, and finally kill glioma cells to realize all-stage glioma therapy.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Nanoparticles , Animals , Blood-Brain Barrier/metabolism , Brain Neoplasms/metabolism , Cell Line, Tumor , Drug Delivery Systems , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioma/drug therapy , Glioma/metabolism , Ligands , Lipids/therapeutic use , Liposomes/metabolism , Mice , Taxoids
11.
Acta Biomater ; 138: 478-490, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34757231

ABSTRACT

Glioblastoma is the most common and aggressive primary brain tumor, whose malignancy is closely correlated with elevated proto-oncogene c-myc. Intranasal administration emerges as a potential approach to deliver gene into the brain and interfere c-Myc expression. However, powerful permeability in nasal mucosa, selective delivery to glioma and avoidance of premature release during remote transport are imperative to ensure the therapeutic effectiveness. To address the above concerns, herein we constructed a lipoplex based on pre-compression of c-Myc-targeting siRNA (sic-Myc) by octaarginine and subsequent encapsulation by liposome modified with a selected peptide derived from penetratin, named 89WP. It was found that the lipoplex exhibited a stable core-shell structure and could be preferentially internalized along with cell debris by glioma cells via active macropinocytosis. Through this cellular uptake pathway, the lipoplex avoided being entrapped by lysosome and released siRNA in cytoplasm within 4 h, inducing substantial downregulation of c-Myc mRNA and protein expression of glioma cells. Furthermore, due to significantly enhanced permeability in tumor spheroids and nasal mucosa, the lipoplex was competent to deliver more siRNA to orthotopic glioma after intranasal administration, and therefore prolonged the survival time of glioma-bearing mice by inducing apoptosis. STATEMENT OF SIGNIFICANCE: In the present work, a lipoplex was designed to address the unmet demands on intranasal siRNA delivery to the brain for treatment of glioma. First, a powerful peptide was selected to enable the lipoplex to penetrate nasal mucosa. Second, we found the lipoplex could be selectively internalized along with cell debris by glioma cells via active macropinocytosis, and recorded the entire process. This cellular uptake pathway not only prevented the lipoplex being entrapped by lysosome, but also increased distribution of the lipoplex in orthotopic glioma. Third, this lipoplex provided additional protection for siRNA to avoid premature release during transport from nasal to brain. Overall, this lipoplex improved the gene delivery efficiency of intranasal administration and was promising in the perspective of selectively silencing disease-related genes in intracranial tumor.


Subject(s)
Glioblastoma , Glioma , Administration, Intranasal , Animals , Cell Line, Tumor , Glioblastoma/genetics , Glioblastoma/therapy , Liposomes , Mice , RNA, Small Interfering
12.
Acta Pharm Sin B ; 11(1): 283-299, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33532193

ABSTRACT

AL3810, a molecular dual inhibitor of the vascular endothelial growth factor receptor (VEGFR) and fibroblast growth factor receptor (FGFR), has earned the permission of phase II clinical trial for tumor treatment by China FDA. As a reversible ATP-competitive inhibitor, AL3810 targets ATP-binding site on intracellular region of VEGFR and FGFR, whereas, AL3810 lacking interplay with extracellular region of receptors rendered deficient blood-brain tumor barrier (BBTB) recognition, poor brain penetration and unsatisfactory anti-glioma efficacy. Integrin αvß3 overexpressed on capillary endothelial cells of BBTB as well as glioma cells illuminated ligand-modified liposomes for pinpoint spatial delivery into glioma. The widely accepted peptide c(RGDyK)-modified liposome loading AL3810 of multiple dosing caused hypothermia, activated anti-c(RGDyK)-liposome IgG and IgM antibody and pertinent complements C3b and C5b-9, and experienced complement-dependent opsonization. We newly proposed a pentapeptide mn with superb αvß3-binding affinity and tailored AL3810-loaded mn-modified liposome that afforded impervious blood circulation, targeting ability, and glioma therapeutic expertise as vastly alleviated immune opsonization on the underpinning of the finite antibodies and complements assembly. Stemming from attenuated immunogenicity, peptide mn strengthened liposome functions as a promising nanocarrier platform for molecular targeting agents.

13.
Mol Pharm ; 17(9): 3281-3290, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32786957

ABSTRACT

c(RGDyK)-modified liposomes have been shown to be immunogenic and potentially trigger acute systemic anaphylaxis upon repeated intravenous injection in both BALB/c nude mice and ICR mice. However, questions concerning the potential influence of mouse strains, immunization routes, drug carrier properties, and changes in c(RGDyK) itself on the immunogenicity and resultant immunotoxicity (anaphylaxis) of cyclic RGD peptide-modified nanodrug delivery systems remain unanswered. Here, these potential impact factors were investigated, aiming to better understand the immunological properties of cyclic RGD peptide-based nanodrug delivery systems and seek for solutions for this immunogenicity-associated issue. It was revealed that anaphylaxis caused by intravenous c(RGDyK)-modified drug delivery systems might be avoided by altering the preimmunization route (i.e., subcutaneous injection), introducing positively charged lipids into the liposomes and by using micelles or red blood cell membrane (RBC)-based drug delivery systems as the carrier. Different murine models showed different incidences of anaphylaxis following intravenous c(RGDyK)-liposome stimulation: anaphylaxis was not observed in both SD rats and BALB/c mice and was less frequent in C57BL/6 mice than that in ICR mice. In addition, enlarging the peptide ring of c(RGDyK) by introducing amino sequence serine-glycine-serine reduced the incidence of anaphylaxis post the repeated intravenous c(RGDyKSGS)-liposome stimulation. However, immunogenicity of cyclic RGD-modified drug carriers could not be reversed, although some reduction in IgG antibody production was observed when ICR mice were intravenously stimulated with c(RGDyK)-modified micelles, RBC membrane-based drug delivery systems and c(RGDyKSGS)-liposomes instead of c(RGDyK)-liposomes. This study provides a valuable reference for future application of cyclic RGD peptide-modified drug delivery systems.


Subject(s)
Antibody Formation/immunology , Immunotoxins/immunology , Nanoparticles/chemistry , Peptides, Cyclic/immunology , Pharmaceutical Preparations/administration & dosage , Animals , Cell Line, Tumor , Drug Carriers/chemistry , Drug Delivery Systems/methods , Erythrocytes/immunology , Immunoglobulin G/immunology , Liposomes/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Nude , Micelles , Rats , Rats, Sprague-Dawley
14.
Theranostics ; 10(9): 4073-4087, 2020.
Article in English | MEDLINE | ID: mdl-32226540

ABSTRACT

Uncontrollable cell proliferation and irreversible neurological damage make glioma one of the most deadly diseases in clinic. Besides the multiple biological barriers, glioma stem cells (GSCs) that are responsible for the maintenance and recurrence of tumor tissues also hinder the therapeutic efficacy of chemotherapy. Therefore, all-stage precisional glioma targeted therapy regimens that could efficiently deliver drugs to glioma cells and GSCs after overcoming multiple barriers have received increasing scrutiny. Methods: A polymeric micelle-based drug delivery system was developed by modifying a "Y-shaped" well-designed ligand of both GRP78 protein and quorum sensing receptor to achieve all-stage precisional glioma targeting, then we evaluated the targeting ability and barrier penetration ability both in vitro and in vivo. In order to achieve all-stage precisional therapy, we need kill both GSCs and glioma related cells. Parthenolide (PTL) has been investigated for its selective toxicity to glioma stem cells while Paclitaxel (PTX) and Temozolomide (TMZ) are widely used in experimental and clinical therapy of glioma respectively. So the in vivo anti-glioma effect of combination therapy was evaluated by Kaplan-Meier survival analysis and immunohistochemical (IHC) examination of tumor tissues. Results: The "Y-shaped" well-designed peptide, termed DWVAP, exhibited excellent glioma (and GSCs) homing and barrier penetration ability. When modified on micelle surface, DWVAP peptide significantly enhanced accumulation of micelles in brain and glioma. In addition, DWVAP micelles showed no immunogenicity and cytotoxicity, which could guarantee their safety when used in vivo. Treatment of glioma-bearing mice with PTL loaded DWVAP modified PEG-PLA micelles plus PTX loaded DWVAP modified PEG-PLA micelles or PTL loaded DWVAP modified PEG-PLA micelles plus TMZ showed improved anti-tumor efficacy in comparison to PTL and PTX loaded unmodified micelles or PTL loaded unmodified micelles plus TMZ. Conclusion: Combination of all-stage targeting strategy and concomitant use of chemotherapeutics and stem cell inhibitors could achieve precise targeted therapy for glioma.


Subject(s)
Antineoplastic Agents/administration & dosage , Brain Neoplasms/drug therapy , Drug Carriers/therapeutic use , Glioma/drug therapy , Paclitaxel/administration & dosage , Temozolomide/administration & dosage , Animals , Cell Line, Tumor , Endoplasmic Reticulum Chaperone BiP , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Mice, Nude , Micelles , Peptides/therapeutic use , Polyethylene Glycols/therapeutic use , Rats, Sprague-Dawley , Sesquiterpenes/administration & dosage
15.
J Control Release ; 320: 63-72, 2020 04 10.
Article in English | MEDLINE | ID: mdl-31917294

ABSTRACT

In glioblastoma with typical immunosuppressive characteristics, immune checkpoint inhibitors treatment showed unsatisfactory clinical effects, attributable to the exclusion of antibodies by blood-brain barrier (BBB) to a large extent. Herein, a conjugate of anti-programmed death ligand 1 antibody (αPDL1) and the targeting moiety p-hydroxybenzoic acid (pHA) was designed to realize crossing BBB of antibody based on the dopamine receptor mediated transcytosis. Conjugation with pHA did not influence the binding affinity of αPDL1 with PD-L1 protein, thus maintaining the capability of PD pathway blockade. Importantly, pHA-αPDL1 crossed BBB, demonstrated by the increased distribution in both the brain and the glioma after intravenous administration of pHA-αPDL1. Compared with the unmodified αPDL1, pHA-αPDL1 prolonged the survival time and suppressed tumor growth more effectively in an orthotopic glioblastoma model by activating glioma-infiltrating T cells. Our results suggested the potential of the antibody-pHA conjugate to improve efficacy for cerebral diseases by providing a potential platform for macromolecules to play therapeutics role in the brain.


Subject(s)
Brain Neoplasms , Glioblastoma , B7-H1 Antigen/metabolism , Brain/metabolism , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Humans , Hydroxybenzoates , Immunotherapy , Programmed Cell Death 1 Receptor/metabolism
16.
Phytother Res ; 34(1): 104-117, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31515889

ABSTRACT

The side effects of docetaxel have limited its antitumor performances in the treatment of nonsmall cell lung cancer (NSCLC). To address the problem, baicalein, a bioactive flavone that exhibits antitumor activity, was combined with docetaxel so as to achieve better efficacy and lower toxicity. The combination treatment enhanced the stabilization of microtubules and halted the cell-cycle progression, thus synergistically inhibiting the proliferation and inducing the apoptosis of A549 cells and Lewis lung carcinoma cells. The decreased expression of Cyclin-dependent kinase 6 and Cyclin B1 confirmed its regulation in cell cycle, with ß-catenin being an important upstream effector, as evidenced by the decreased expression in the cytoplasm and nucleus as well as the attenuated aggregation in the nucleus. Furthermore, baicalein plus docetaxel evinced better antitumor efficacy by the suppressed tumor growth, increased apoptosis, and decreased tumor angiogenesis in vivo, with no increased toxicity discovered in both tumor-bearing and non-tumor-bearing mice, and an improvement in therapeutic index. This study has demonstrated that baicalein plus docetaxel is an appropriate combination simultaneously with augmented antitumor efficacy and acceptable safety, which might be a promising strategy for patients with advanced NSCLC.


Subject(s)
Antioxidants/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Therapy, Combination/methods , Flavanones/therapeutic use , Lung Neoplasms/drug therapy , beta Catenin/metabolism , Animals , Antioxidants/pharmacology , Carcinoma, Non-Small-Cell Lung/pathology , Docetaxel/pharmacology , Docetaxel/therapeutic use , Flavanones/pharmacology , Humans , Lung Neoplasms/pathology , Male , Mice
17.
J Control Release ; 316: 381-392, 2019 12 28.
Article in English | MEDLINE | ID: mdl-31730912

ABSTRACT

Liposomes with peptide motifs have been successfully used in glioma-targeted delivery of various general chemotherapy agents. However, their use for the encapsulation of low-toxicity molecularly targeted anticancer agents has been limited. In the present study, we aimed to assess the efficacy and safety of a novel low-toxicity mTORC1/mTORC2 inhibitor (MTI-31) as a treatment for glioma when encapsulated in appropriate liposomes. Since some of the peptide-modified liposomes have been determined to be immunogenic and may have life-threatening consequences in mice, an immunogenicity-based investigation with candidate liposomal carriers was conducted. Following this study, DVAP (DPDADVDRDTDNDS) modified liposomes (DVAP-liposomes) were identified as an immunologically safe carrier and therefore utilized for MTI-31 encapsulation. DVAP is a tumor homing peptide exhibiting high binding affinity to glucose regulated protein 78 (GRP78) overexpressed in glioma, glioma stem cells, vasculogenic mimicry and neovasculature. Modification of liposomes with DVAP imparts a glioma-directing property. In vitro, the developed DVAP-liposomes/MTI-31 were efficiently internalized by U87 cells and consequently showed a potent antiproliferation effect. In vivo, the safety and anti-glioma efficiency of DVAP-liposomes/MTI-31 were validated in intracranial glioma bearing BALB/c nude mice. While showing both systemic and immunological safety, DVAP-liposome/MTI-31 treatment resulted in a significant improvement in the median survival time (24.5 days for saline, 26 days for free MTI-31, 25 days for liposomes/MTI-31 and 36 days for DVAP-liposome/MTI-31). The results highlight MTI-31 as an effective anti-glioma agent when encapsulated in non-immunogenic glioma-targeted liposomes, which may contribute to the development of better anti-glioma treatment.


Subject(s)
Antineoplastic Agents/administration & dosage , Brain Neoplasms/drug therapy , Glioma/drug therapy , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Delivery Systems , Endoplasmic Reticulum Chaperone BiP , Glioma/pathology , Humans , Liposomes , Male , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 2/antagonists & inhibitors , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Mice, Nude , Peptides/chemistry , Survival Rate , Time Factors
18.
Int Immunopharmacol ; 75: 105799, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31401387

ABSTRACT

Depression is a chronic, severe, and often life-threatening disease accompanied with impaired neurogenesis. Evidence showed that neuroinflammation played a key role in the process of depression. High mobility group protein box 1 (HMGB1) has been proved to function as a pro-inflammatory cytokine. In this study, we used a social defeat (SD) stress to induce inflammatory response, aiming to explore the relationship between HMGB1 and neuroinflammation. We found that the expression of HMGB1 decreased in mice exposure to SD stress, but showed a high expression of cytoplasmic HMGB1 and a high expression of RAGE, which could be rescued by ICA and ICT. So, we speculated that the translocation of HMGB1 from the nucleus to the cytoplasm might play an important role in neuroinflammatory process, and HMGB1-RAGE signaling was involved in this process. Furthermore, we also found that TLR4-XBP1s-ER stress related NF-κB signaling activation was also involved in HMGB1-related neuroinflammation. However, ICA and ICT treatment activated NF-κB signaling, and we also observed the translocation of HMGB1 into the nucleus and the increased number of neurons in mice hippocampus, indicating that the activation of NF-κB signaling might be related to neuroregeneration. Moreover, recombinant human HMGB1 protein (rHMGB1) pretreatment could suppress HMGB1-RAGE signaling and TLR4-XBP1s-ER stress related NF-κB signaling, resulted in a suppressed microglia activation in mice hippocampus. We supposed that ICA and ICT could ameliorate neuroinflammation in hippocampus via suppressing HMGB1-RAGE signaling and show neuroprotective effects via activating TLR4- NF-κB signaling at the same time, resulting in improving depressive behaviors in mice.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Flavonoids/therapeutic use , Neuroprotective Agents/therapeutic use , Stress, Psychological/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Behavior, Animal/drug effects , Cytokines/blood , Cytokines/genetics , Disease Models, Animal , Flavonoids/pharmacology , HMGB1 Protein/blood , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Male , Mice, Inbred C57BL , NF-kappa B/metabolism , Neuroprotective Agents/pharmacology , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction/drug effects , Stress, Psychological/metabolism
19.
Int J Biol Sci ; 15(7): 1500-1513, 2019.
Article in English | MEDLINE | ID: mdl-31337979

ABSTRACT

Non-small cell lung cancer (NSCLC) is the leading cause of cancer death in the world. Inhibitor of differentiation 1 (Id1) is overexpressed in NSCLC and involved in promoting its progression and metastasis. Identifying natural compounds targeting Id1 may have utility in NSCLC treatment. Here, we sought to determine whether the anti-tumor activities of Scutellaria flavonoids (SFs) were related to Id1. We reported that three SFs (baicalin, baicalein and wogonin) exhibited strong antitumor activity in NSCLC cells in vitro and in vivo. Id1 played a pivotal role on blockage of migration and invasion by SFs. Abrogation of invasion and migration mediated by baicalin, baicalein and wogonin were totally abolished by ectopic overexpression of Id1. Mechanistically, baicalin, baicalein and wogonin activated Rap1-GTP binding and dephosphorylated Akt and Src by suppressing a7nAChR, consequently triggering inhibition of Id1. Then attenuation of its downstream mediators, VEGF-A, N-cadherin, vimentin, combined with augment of E-cadherin led to the blockage of proliferation, EMT and angiogenesis of NSCLC. Overall, our data shed light on heretofore-undescribed role of SFs as modulators of Id1, which may be a useful strategy in the treatment of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Flavonoids/pharmacology , Inhibitor of Differentiation Protein 1/metabolism , Lung Neoplasms/drug therapy , Scutellaria/chemistry , A549 Cells , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Survival , Flavanones/pharmacology , Guanosine Triphosphate/chemistry , Humans , Lung Neoplasms/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Neoplasm Metastasis , Phenotype , Phosphorylation , Plant Extracts/pharmacology , Shelterin Complex , Telomere-Binding Proteins/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism
20.
ACS Nano ; 13(5): 5591-5601, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31070352

ABSTRACT

The safe and efficient delivery of chemotherapeutic agents remains critical to anticancer therapy. Herein, we report on a targeted drug delivery system based upon a modified cell membrane coating technique and drug nanocrystals (NCs). Specifically, red blood cell (RBC) membrane was modified with targeting peptides through a facile insertion method involving avidin-biotin interactions. The RBC membrane-coated drug NCs (RBC-NCs) exhibited high drug loading, long-term stability, excellent biocompatibility, and prolonged retention time, all of which make them suitable for effective drug delivery. When modified with the tumor-targeting peptide c(RGDyK), the resulting RGD-RBC-NCs showed superior tumor accumulation and therapeutic efficacy both in mice bearing a subcutaneous tumor as well as orthotropic glioma. RBC-NC therapeutics can be readily generalized to the delivery of various drugs and for the treatment of a wide range of cancers.


Subject(s)
Drug Delivery Systems , Glioma/drug therapy , Nanoparticles/chemistry , Peptides/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Membrane/drug effects , Doxorubicin/chemistry , Doxorubicin/pharmacology , Glioma/pathology , Humans , Ligands , Mice , Nanoparticles/administration & dosage , Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...